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The stability properties of a periodically loaded non-linear dynamic system are
investigated and special attention is given to damping e!ects. Advantage is taken of the
Floquet theory and the FE-approach is applied to a hinged beam where the damping is
described by a standard material model and where even damping e!ects at the hinges are
considered. Comparisons are made with experimental results.
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1. INTRODUCTION

In many engineering systems of practical importance, one encounters excited systems which
exhibit periodic, aperiodic or even chaotic behaviour depending on the loading parameters
(see, e.g., references [1}4]). The principal issue which has to be solved is the question of
stability of the system, reduced in many cases to the problem of "nding the stability
conditions of a particular solution. However, to solve the general problem, that is, to
identify the stability borders in the complete loading parameter space for a periodically
excited system, is a more complex issue. One way is to use Floquet theory and perform
a numerical integration of the governing di!erential equations from the initial value equal
to the identity matrix, over the time corresponding to one time period of the loading to
establish the transition or monodromie matrix [5]. The stability properties of the solution
are then given by examination of the eigenvalues of the monodromie matrix. To determine
the stable and unstable regions in the loading parameter space with this approach, one has
to establish a gridwork and do the numerical integration for each nodal point in that
gridwork. This is an ine$cient method; instead, advantage is taken of the fact that at that
stability borders in the loading parameter space, the solutions of the system become
periodic. This is a conclusion of the Floquet theory and, thanks to the periodicity, the
solutions can be expressed as Fourier series. From the Fourier expansions, the stability
borders are given by the solution of an eigenvalue problem of in"nite order. An
approximation is achieved by taking the "rst order subdeterminant of the matrices of
coe$cients; this technique is adopted originally in reference [6] and later on in, for example,
reference [7]. The same technique combined with FE-formulation is used in reference [8]
and there the periodic loading term gives an extra contribution to the sti!ness matrix. In
reference [9], a "nite di!erence method is used for deriving the instability regions for
clamped}clamped and clamped}simply supported columns under periodic axial loading.
The investigation is complemented by experimental results.

If a dynamic system is to be described, the question of how to deal with damping always
appears. Damping is often crucial when dealing with stability problems, both for describing
the stable or unstable motion of the system and when the stability borders in the parameter
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Figure 1. The system under study.
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space are to be determined. Here, a computation model including external damping in the
boundary conditions and internal material e!ects is established. The starting point is
a rather general material model which will cause third order time derivatives in the
governing equations. However, the concept of the Fourier expansions of the solutions at the
stability borders can still be used. In the FE-formulation, boundary terms governing
damping are included and the method will be illustrated by calculating the stability diagram
of an axially loaded beam in an e$cient way. It might seem to be more complicated than is
necessary when using FE-elements for a geometry where the global modes are already
known [6]. However, this system is chosen just for illustration and the method presented
can be used for systems with more complicated boundary conditions and elastic
frameworks. The calculations are performed in Matlab using the FE tool-box CALFEM
[10] and the in#uence of both material damping and damping at the boundary will be
veri"ed experimentally.

2. INVESTIGATED SYSTEM

The system considered is a homogeneous transversally vibrating beam with length ¸,
constant cross-section A and mass density o. The beam is loaded axially with the force P(t)
(positive in compression) and w (x, t) is the transverse de#ection of the beam midpoint
(Figure 1).

2.1. EQUATIONS OF MOTION

The general expression of virtual work is stated as
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denote the stress and strain tensors, respectively,< is the region and S is the
boundary surface of the region. Moreover, u
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unit volume F
i
and the surface traction vector t

i
. Adopting the Euler}Bernoulli assumption

for the beam, the displacements u
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where u (x, t) is the longitudinal displacement measured positively in the x direction
(Figure 1). In this work, the von Karman assumption [11] is used, allowing Green's normal
strain tensor e along the beam axis to be approximated as
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Note that due to the Euler}Bernoulli assumption only the normal strain (3) is assumed to
exist.

With these de"nitions and in the absence of the body forces F
i
, equation (1) can be written

as
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where p"p
11

is the normal stress. To reduce the above equation to a more convenient
form, the volume integrals are split into an integral along the beam axis and an integral over
the cross-section. Moreover, it also turns out to be advantageous to locate the beam axis at
the mass centre of the cross-section, i.e., :

A
zdA"0 where A is the cross-section of the beam.

From the split of the "rst volume integral it then follows that the section resultants
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A
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A

zpdA (5)

are natural quantities, where N is the normal force and M is the bending moment. The
moment of inertia I of the cross-section is de"ned by

I"P
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z2dA, (6)

whereas the transverse shear force Q is de"ned by
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Considering loading only at the endpoints of the beam, it follows that the surface integral
in equation (4) is identical to the cross-section integral, i.e., dS"dA. Moreover, from
t
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"p

ij
n
j
where n

j
is the unit normal vector pointing out from the body, it is found that at
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. Finally, using

equations (5) and (6) in equation (4) gives
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After partial integrations of selected terms knowing that du can be varied arbitrarily, the
equation of motion in the x direction is given as
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and by varying dw it follows that
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Moreover, the natural boundary condition associated with the problem formulation is
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The third term in equation (10) governs the e!ect of the rotary inertia and can be ignored
for the problem in question [4]. Then the third term in the boundary condition for the force
Q in equation (11) will vanish.

If the axial force is assumed to oscillate sinusoidally with time, cf. equation (22), and the
period of oscillation, 2n/u, is at least one order of magnitude higher than the travel time of
longitudinal waves from one end of the beam to the other, then the longitudinal wave
motion can be neglected. Consequently, the normal force is not dependent upon the
position along the beam and NK!P.

2.2. MATERIAL MODEL

Two di!erent types of damping will be considered in this paper, material damping and
damping at the boundaries. Here a derivation of the material damping will be given in
a thermodynamic framework described in reference [12]. To obtain a viscoelastic material
model it is assumed that the total strain e can be split into an elastic part, ee, and a viscous
part ev, i.e.,

e"ee#ev. (12)

Since isothermal conditions are considered, the second law of thermodynamics written as
Clausius}Duhem's inequality takes the form

c"pe5!ot0 (e, ev)*0, (13)
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where c is the dissipation function and t denotes Helmholtz's free energy function per unit
mass. The speci"c form of Helmholtz's free energy function is taken as
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2

e2
v
. (14)

Here, E is the modulus of elasticity and EM a hardening modulus. Making use of
equation (14) in equation (13) yields
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Since this inequality should hold for all e5 and e5 v, an allowable solution is given by
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To satisfy the dissipation inequality the evolution law for e5 v is taken as

e5 v"!kpv, (18)

where k is the viscosity parameter of the material. Using equation (18) in equation (16) then
yields c"k (pv)2*0, that is, it is necessary that k*0 to satisfy the second law of
thermodynamics.

Solving ev from equation (17a) and insertion into equation (17b) gives

pv"EM e!A1#
EM
EBp. (19)

The stress}strain relation is then found by a di!erentiation of equation (17a) and use of
equations (18) and (19) to obtain

p5 #k(E#EM )p"kEM Ee#EeR . (20)

The above stress}strain law is known as a standard material model. If k"0 usual elasticity
is found, if EM "0 a Maxwell material model is obtained and if EPR a Kelvin model is
obtained. In the latter case, however, the thermodynamic arguments leading to
equation (20) need, in principle, to be modi"ed and a dissipative stress must be introduced
in equation (17a). Making use of the de"nition of the strain tensor, cf. equation (3),
multiplying equation (20) by z and integrating over the cross-section area it follows that
equation (20) can be written as
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where equations (6) and (5b) were used.



Figure 2. The hinges.

3. STRONG FORM OF THE EQUATION OF MOTION
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The driving force in the system is given by the axial force P (t) (Figure 1), which is assumed
to vary harmonically with time, i.e.,

P"P (t)"P
S
#P

D
cos ut. (22)

First, derive the equation of motion (10) in terms of the transverse de#ection where, as
previously mentioned, the rotary inertia term can be ignored. Di!erentiation of
equation (21) with respect to the position co-ordinate x twice and using equation (10) as
well as N"!P results in
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To "nally settle the strong form of the problem the boundary conditions must be
speci"ed. The boundary conditions are introduced here in such a way that not only
#exibility, but also damping can be accounted for. Therefore, the hinges are modelled by
one sti!ness part and one viscous part; i.e.,
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Obviously, sti! hinges can be modelled by letting k
b
PR, and free hinges by k

b
"c

b
"0

(Figure 2). Finally, the essential boundary conditions are given as w (0)"w (¸)"0.

3.1. FE-FORMULATION

The FE-formulation is obtained in a standard manner, i.e., the strong form of the
equation of motion (23) is multiplied with an arbitrary weight function v(x), integrated over
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the length of the beam and selected terms are integrated by parts twice, thereby arriving at
the weak form. Moreover, the approximation for w is introduced as

w (x, t)"N(x)a(t), (25)

where N (x) are the global shape functions and a (t) is the nodal displacement vector.
Moreover,

L2w
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Following Galerkin's method, the weight vector is approximated with the same shape
functions, i.e.,

v"N(x)c"cTNT,
L2v

Lx2
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In the following evaluation, shape functions are chosen which approximate the de#ection as
a Hermite interpolation. Inserting these approximations in the weak form of equation (23),
using the relations of equations (24) for the boundary terms and noting that the c-matrix is
independent of the co-ordinate x, will result in the Mathieu di!erential equation (23)
written in matrix format as
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Figure 3. Stability chart of the undamped simply supported system. The load scale is normalized with the "rst
buckling load and the frequency scale is normalized with two times the lowest eigenfrequency.
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In the FE-formulation (28), advantage has already been taken of the essential boundary
conditions, i.e., w (0)"w (¸)"0.

Equation (28), in which some coe$cients change harmonically, is recognized as
a Mathieu di!erential equation in matrix form. From the theory of Mathieu functions
[13, 6], it is evident that the nature of the solution is dependent on the choice of load
frequency and load amplitude. The frequency}amplitude domain is divided into regions
which give rise to stable solutions and to regions which cause unstable solutions. On the
border lines between the stable and unstable regions, the solutions are periodic with period
¹"2n/u or 2¹; this follows from the theory of Floquet [6]. More precisely, two solutions
of identical periodicity bound the region of instability and two solutions of di!erent
periodicity bound the region of stability (Figure 3). In this context, a stable solution means
that the motions remain within a bounded neighbourhood of the initial conditions, i.e.,
stability in the Lyapunov sense [14].

4. PRELIMINARIES

Since the solutions of equation (28) are periodic on the stability border lines, it seems
natural to express them as trigonometric time series expansions, i.e.,
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If the series expansions of equation (30) are used in equation (28), term-wise comparisons of
the sine- and cosines coe$cients will give in"nite systems of homogeneous algebraic



DYNAMIC INSTABILITY REGIONS 787
equations for the vectors c
k

and d
k

for the solutions on the stability borders. Non-trivial
solutions exist if the determinant of the coe$cient matrices of these equation systems of
in"nite order vanish. When looking for numerical solutions, systems of "nite order are
required and as it is shown in reference [6], a su$ciently close approximation of the in"nite
eigenvalue problems is obtained by taking k"1, 2 in the expansions in equation (30) and
putting the determinants of the coe$cient matrices of the "rst order equal to zero (see also
reference [8]).

4.1. PERIOD 2T

Using the "rst order time series expansion of equation (30) in equation (28) the following
determinant is achieved:
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To solve the third order eigenvalue equation of the system of equation (31) a standard
transformation is needed. Consider a general matrix equation of third order in u written in
standard form, i.e.
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are square matrices, all of the same order and X is some eigenvector.

An enlarged eigenvector U is introduced as
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By use of this enlarged eigenvector, the third order eigenvalue problem in equation (33) is
transformed to a linear one,
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which can be solved with standard methods. When applying this transformation in
equation (31) it is noted that if the original matrices K

e
, K

gS
, K

gD
, C, M and M* are of

order (n]n), then the third order expression of equation (31) is of order (2n]2n) and
the transformed generalized eigenvalue problem, which has to be solved, is of order
(6n]6n).

Solving the eigenvalue problem of equation (31) will give an approximation of the
principal region of stability where the solutions on the stability borders have the time period
2¹.

4.2. PERIOD T

When the second time series expansion of equation (30) is used in equation (28) the
following determinant is achieved:
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The solution of the eigenvalue problem of equation (36) by the transformation method
described above gives the secondary instability region which has border lines with periodic
solutions of periodicity ¹.

5. NUMERICAL RESULTS

The calculations were performed in Matlab [15] with use of the "nite element toolbox
CALFEM [10] and the procedure was as follows. In the initialization phase the geometry
and material parameters were speci"ed. The elements in use were standard beam elements
and the problem had 15 degrees of freedom. The value of the static loading has been set to
zero, i.e., P

S
"0 in all the presented investigations. The dynamic load, P

D
, was increased

stepwise and for each value of the dynamic load, all matrices in equations (31) and (36) were
calculated, the eigenvalue problem was solved and frequencies at the stability boundaries
were obtained. The results for the undamped simply supported system are presented in
Figure 3.

To obtain information about the in#uence of the material damping, systematic
investigations were performed of the simply supported system. The value of the two
material parameters EM and k were varied and the location of the principal instability region
was followed. From Figure 4 (left), where k"constant and EM is varied, it can be concluded
that the position of the instability region moves and opens up when EM decreases (when
EM "0, a Maxwell material is achieved). It appears that the lowest value of the amplitude for
which instability occurs moves along the dash-dotted curve ABC as EM is decreased.

The corresponding behaviour for decreasing values of k and keeping EM constant is shown
in Figure 4 (right). Here the stability region moves to decreasing values of frequencies and



Figure 4. Stability chart. The left chart shows the in#uence of varying EM when k"2)1]10~9 m2/N s and
in the right chart k is varying when EM "100E"2)1]1013N/m2. (A) (a) E1 "100E1 , (b) E1 "E, (c) E1 "0)2E, (d)
E1 "0)06E; (B) (a) k"0, (b) k"0)042]10~9m2/N s, (c) k"0)11]10~9m2/N s, (d) k"0)21]10~9m2/N s,
(e) k"0)42]10~9m2/N s, (f) k"1)1]10~9m2/N s, (g) k"210]10~9m2/N s.

Figure 5. Calculations of a clamped}simply supported system with no material damping and, presented in the
left chart, di!erent values of k

b
, i.e., varying the sti!ness in the hinge while c

b
"0 (constant), and in the right chart

di!erent values of c
b
, i.e., varying the damping in the hinge while k

b
"0 (constant). (A) (a) k

b
"0, c

b
"0; (b)

k
b
"12 N/m, c

b
"0; (c) k

b
"13N/m, c

b
"0; (B) (a) k

b
"0, c

b
"0; (b) k

b
"0, c

b
"0)02 Nm/s; (c) k

b
"0,

c
b
"0)03 Nm/s.
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the lowest value of the load amplitude to reach instability "rst increases and then decreases
when the value of k increases.

In Figure 5, the in#uence of the two parameters governing damping in the boundary
conditions, k

b
and c

b
, is investigated. The conclusion of this investigation is that varying k

b
will move the principal instability region in the vertical direction only (Figure 5 (left)) while,
on the other hand, by increasing c

b
the instability region is moved primarily in the

horizontal direction (Figure 5 (right)).



Figure 6. Stability chart for the simply supported steel beam. The stars represent experimental data and the
solid lines denote results from calculations for linear elasticity (i.e., k"0).
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6. EXPERIMENTAL RESULTS

The in#uence of material damping and damping in the hinges will now be investigated
experimentally and comparisons with simulations will be presented.

The experimental set-up can be described as a horizontally oriented beam with hinges at
both ends. One of the hinges is connected to an electro-magnetic vibrator and the other to
a load cell. A more detailed description of the set-up is presented in reference [4]. It should
be noted that the constraints for the midpoint de#ection of the beam that are described in
reference [4] are not used in the work presented here.

The loading points on the periodic border lines between stable and unstable motions
were experimentally detected as follows: for each frequency of interest and a low load
amplitude level, the beam midpoint was given an initial de#ection and velocity and it was
observed that the lateral vibrations fade out. This procedure was repeated at increasing
levels of load amplitudes until the lateral vibration became periodic; this periodicity signals
the instability border.

The investigation was "rst carried out with a beam made of steel with a cross-section of
1]25 mm2 and a length of 400 mm. This gives the "rst buckling load as 25 N and the "rst
eigenfrequency as 14 Hz which has been used for normalization of the experimental results
presented in Figure 6. In the corresponding simulations, no damping e!ects were
considered and it appears that a close agreement between experimental data and
simulations was obtained.

To capture material damping, a glass-mat-reinforced thermoplastic material (GMT) was
chosen. The GMT beam had a "rst buckling load of 39 N and a lowest eigenfrequency of
23 Hz. The experimental results are presented in Figure 7 and the damping is obvious. The
dashed curves in Figure 7 are obtained from calculations with material damping, i.e.,
EM "3E (where E"6]109 N/m2) and k"9)0]10~13 m2/N s as well as k

b
"c

b
"0. The

close agreement between experimental data and simulations proves that the damping
e!ects, indeed, are due to material damping alone. This conclusion is supported by
comparisons with the e!ects of material damping and hinge damping illustrated in



Figure 7. Stability chart for the glass-mat-reinforced thermoplastic simply supported beam. The stars denote
experimental data and the dashed lines represent results from calculations with the material parameters,
E"6]109 N/m2, EM "3E and k"9)0]10~13 m2/N s.
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Figures 4 and 5 respectively. It is concluded that damping in the hinges in the present
experimental set-up is quite small.

To obtain experimental data for damping in the hinges, advantage is taken of the study
presented in reference [9]. The response of a steel beam (clamped}simply supported) was
investigated and a quite substantial discrepancy between their simulations and
experimental data was observed. It will be shown here that very accurate predictions can be
obtained if damping in the hinge is considered. The experimental data of reference [9] are
shown in Figure 8 and since the material is steel, material damping can be ruled out
(Figure 6).

Simulations with various values for the hinge damping parameters were performed and
best agreement with experimental results was obtained with c

b
"300 Nm/s, k

b
"10)8 Nm

for the hinge at the simply supported end. These simulations are also shown in Figure 8 and
close agreement is obtained with the experimental data.

7. CONCLUSIONS

An accurate numerical method for investigation of the stability properties of a dynamic
system with periodic coe$cients has been presented. Both internal damping and damping
at the boundaries of the system can be accounted for. The actual di!erential equations do
not have to be solved; instead, the stability boundaries are approximated by solving an
eigenvalue problem which has been derived by Fourier expansion.

Due to the starting point of a quite general material model in terms of a standard material
model, third order time derivatives are present in the governing equations. This fact does



Figure 8. Stability chart of a clamped}simply supported steel beam. The stars denote experimental data from
reference [15] and the solid and dashed lines represent results from calculations with the hinge parameters
c
b
"300 Nm/s and k

b
"10)8 Nm.
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not a!ect the use of the Floquet solution and the interpretation of the stability problem,
which being an eigenvalue problem, is solvable with standard methods.

The material model is able to capture a variety of material behaviours and a close
correspondence is reached for calculated values and the experimental data from the present
set-up with materials with and without damping. Moreover, with the damping model of the
hinges it is possible to explain experimental data found in the literature.
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